Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Adv Mater ; 33(34): e2101707, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1316189

ABSTRACT

The transfer of foreign synthetic messenger RNA (mRNA) into cells is essential for mRNA-based protein-replacement therapies. Prophylactic mRNA COVID-19 vaccines commonly utilize nanotechnology to deliver mRNA encoding SARS-CoV-2 vaccine antigens, thereby triggering the body's immune response and preventing infections. In this study, a new combinatorial library of symmetric lipid-like compounds is constructed, and among which a lead compound is selected to prepare lipid-like nanoassemblies (LLNs) for intracellular delivery of mRNA. After multiround optimization, the mRNA formulated into core-shell-structured LLNs exhibits more than three orders of magnitude higher resistance to serum than the unprotected mRNA, and leads to sustained and high-level protein expression in mammalian cells. A single intravenous injection of LLNs into mice achieves over 95% mRNA translation in the spleen, without causing significant hematological and histological changes. Delivery of in-vitro-transcribed mRNA that encodes high-affinity truncated ACE2 variants (tACE2v mRNA) through LLNs induces elevated expression and secretion of tACE2v decoys, which is able to effectively block the binding of the receptor-binding domain of the SARS-CoV-2 to the human ACE2 receptor. The robust neutralization activity in vitro suggests that intracellular delivery of mRNA encoding ACE2 receptor mimics via LLNs may represent a potential intervention strategy for COVID-19.


Subject(s)
COVID-19 Vaccines/genetics , Galactosidases/chemistry , Nanoparticles/chemistry , Phosphatidylethanolamines/chemistry , RNA, Messenger/chemistry , SARS-CoV-2/genetics , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/prevention & control , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/metabolism , Cell Membrane Permeability , Cell Survival/drug effects , Female , Galactosidases/metabolism , Gene Expression Regulation , Gene Transfer Techniques , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Phosphatidylethanolamines/metabolism , Protein Binding , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL